
ASYMPTOTIC OF THE FREE VIBRATIONS OF A CLAMPED RECTANGULAR PLATE. 

FORMULATION OF THE SHORTENED PROBLEM 

V. M. Kornev and A.O. Mul'kibaev UDC 539.3 

The edge effect at corner points is not taken into account when applying the asymptotic 
method [1-3] to the analysis of natural vibrations of rectangular plates. We show how to re- 
fine the accuracy of construction of the asymptotic with the corner boundary layers taking 
into account [4, 5]. Since the variability of the main part of the solution and the edge ef- 
fect is of an identical order, it is impossible to write the boundary conditions of the 
original problem [1-3] in canonical form [6], and consequently, the method of elimination is 
used [7, 8]. 

The original problem of free vibrations of a clamped rectangular plate is divided into 
two lower-order problems. The first describes the oscillating main part of the solution, 
while the second is considered as a perturbation problem, where a small parameter is associ- 
ated with a large eigenvalue. 

Formulation of the reduced problem permits reduction of the investigation of the asymp- 
totic of the eigenfunctions and eigenvalues of the original problem to a study of the eigen- 
functions and eigenvalues of the reduced problem, which is of lower order. 

i. Formulation of the Problem. Asymptotic Expansions. 

The asymptotic of the natural vibrations modes and frequencies of a constant-thickness 
clamped plate is considered in a rectangular domain 0 ~ x < a, 0 5 y ! b 

AAw(x, y) - -  ~k~w(x,  y) = 0, ( 1 . 1 )  

where  w(x ,  y)  i s  t h e  n o r m a l  d e f l e c t i o n ,  m i s  t h e  n a t u r a l  v i b r a t i o n  f r e q u e n c y ,  k 2 = ph/D,  h 
is the plate thickness, p is the specific mass, 
boundary conditions are 

w i t = O ,  

and D is the cylindrical stiffness. 

= o .  

Equation (1.!) has the representation 

(A + ~k)(e~A - -  k ) w ( x ,  y )  = O, ~ = ~-~. 

L e t  ~ >> 1, t h e n  s << 1. L e t  us  a s sume  t h a t  w(x ,  y )  = u ( x ,  y)  + v ( x ,  
u ( x ,  y )  and v ( x ,  y)  s a t i s f y  t h e  e q u a t i o n s  

The 

y). The functions 

(1.2) 

Au(x, g) @ o)ku(x, y) = 0; ( 1 . 3 )  

e2Av(x, y )  - -  kv(x, y) = 0. ( 1 . 4 )  

Equation (1.3) yields the main oscillating part of the solution of (I.i) and (i.4) the 
rapidly damped part, i.e., the edge effect during vibrations. 

We seek the solution of (1.4) in a form proposed in [4] 
oo 

v(x, y) = ~ e ~ [IIli(~x, y) + II2i(~2, g) + Ql~(x, ~h) + Q2i(x, ~l.,) + ( 1 . 5 )  
i = 0  

+ Pl~ (L, nx) + P~  (~1, ~1~) + P~  (~, Ill) + P~  (~, n~)l 
(~ = x / e ,  ~ = (a  - x ) l e ,  ~h = y / e ,  ~3~ = ( b  = y ) l e ) .  
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The boundary layer part of the asymptotic consists of boundary functions of two kinds. 
The ordinary boundary layers Hli, H~i, Qzi, Q~i, described by ordinary differential equations 
and in the neighborhood of each side of the rectangle. For instance, in the neighborhood of 
the sides x = 0, 0 5 Y 5 b the boundary functions H~i(~ , y) are determined sequentially by 
using the equations 

02Hli 
--- - -  kH~ = g~ (~ ,  y) (i = 0, t, 2 . . . .  ), 

where  g i ( ~ ,  Y) = --8~H~,i-2/SY ~; go ~ g~ ~ 0. 

The bounda ry  l a y e r  o p e r a t o r s  in  t h e  n e i g h b o r h o o d  o f  t h e  o t h e r  s i d e s  a r e  a n a l o g o u s .  L a t e r  
we s h a l l  need  a s p e c i f i c  k i n d  o f  z e r o  a p p r o x i m a t i o n  

H10(~1, Y) = p0(0, y) exp (--~fL'~x); ( 1 . 6 )  

Qlo(X, ~h) = po(x, 0) exp (--  ~fk-ql). ( 1 . 7 )  

Here  p 0 ( 0 ,  y ) ,  p 0 ( x ,  O) a r e  unknown f u n c t i o n s  c h a r a c t e r i z i n g  t h e  bounda ry  l a y e r  a m p l i t u d e s  
which  w i l l  be d e t e r m i n e d  in  t e rms  o f  t h e  s o l u t i o n  o f  t h e  r e d u c e d  p ro b l em .  The f u n c t i o n s  H 
and Q i n t r o d u c e  an a d d i t i o n a l  r e s i d u a l  in  t h e  b o u n d a ry  c o n d i t i o n s  in  t h e  n e i g h b o r h o o d  o f  t h e  
c o r n e r  p o i n t s  by e l i m i n a t i n g  t h e  r e s i d u a l  in  t h e  b o u n d a ry  c o n d i t i o n s  f o r  u ( x ,  y ) .  To e l i m i -  
n a t e  these residuals, a boundary function P is introduced which is determined from elliptic 
equations. Thus, in the neighborhood of the vertex (0, 0) the boundary functions Pli(~l, ql) 
are determined sequentially by using the equations 

0 2 0 2 
(A - k) P~  (~,  ~ 3  = 0, A = ~ + ~ (~ = % ~ . . . )  (~ .  8) 

in  t h e  domain ~ > 0, ql  > 0. From t h e  r e a s o n i n g  p r e s e n t e d  above  we have  b o u n d a r y  c o n d i t i o n s  
and a c o n d i t i o n  a t  i n f i n i t y  f o r  P~i :  

Pli(~I,, ~I) ~ 0 when~ I ~ oo, Pli(~I~ ~i) --~ 0 when~]l --~ oo, 

on the boundary x = 0 

/Oli(01 ~]1) = " Q I / (  0, ~1); ( 1 .  9)  

on t h e  bounda r y  y = 0 

P1~(~1~ 0) = --Hli(~l, 0). ( 1 . 1 0 )  

Tak ing  ( 1 . 5 )  and ( 1 . 7 )  i n t o  a c c o u n t  we o b t a i n  bounda ry  c o n d i t i o n s  f o r  t h e  z e r o  
approximation 

P~0(0, n~) = --p0(0, 0) exp (-- Fk~1)~ 

Exactly as in [4], we change the function in (1.8) that reduces the original problem to 
a problem with homogeneous boundary conditions 

P~~ rh) ---- --po(O, O) exp (--]/rk-(~, -f- rh) ) q--f~o(~x, ~x), 

where the function ~0(~i, nl) is determined from the boundary value problem 

(A - -  k)~20(~, ~h) = kpo(O, 0) exp (--  ~ k ( ~  -~ ~x)), ( 1 . 1  1 ) 
~'~O( O, %]1) = O, ~r~O(~l , O) = O, ~"~0(~1, ~1) ~ 0 f o r  El ~ ~ and n l  --)" 00. 

The solution (i.ii) using Green's function is presented in [4] 

~o (~, ~) = S S c (~, ~, ~, t) kp~ (0, 0) o~p ( -  V~ (t + s)) at d~, (1. ~ 2) 
o o 

' [ K o ( ] / r k R , ) A - K o ( ] / k R ~ )  K o ( ] / ' k R s ) - - K o ( P r k R , ) ] .  G (~, ~1, s, t) = ~-~ 

Here K0(z) is a cylindrical function of imaginary argument 
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n~ = V'(~ = t) * + ( , ~ -  s)'; n~ = V( ~  + t), + (,, + ~)~i 

n .  = V ( ~  - t) ' + (~ + ~)~; R ,  = V (~ + t) ' + (~ - ~)~. 

Estimate.s for the function ~0(~, rl~.) and its derivatives are established in 

where Po = / ~L 
P~i (i = i, 2, 

[4, 5] 

I Qo, off~ oQ o l 
< ,  ~ 1 <  Coxp(-  ~0), 

2 + q l " ;  0 < < < / k ;  C and < a r e  a r b i t r a r y  c o n s t a n t s .  
. . . )  t h e  b o u n d a r y  c o n d i t i o n s  have  t h e  form 

P~i(O, ~1) : ~i(~1) exp ( -  ]/rk~l), Pl~(~, O) = a i (~)  exp (-7 ] / r ~ )  

[ a i ( ~  ~) and ~ i ( q ~ )  a r e  p o l y n o m i a l s  in  ~ and q~] .  And s i n c e  t h e  bounda ry  c o n d i t i o n s  a r e  con-  
s i s t e n t  at the corner point, then ai(0) = $i(0). Executing the appropriate substitution in 
( 1 . 8 )  

(1.13) 

For  t h e  s u b s e q u e n t  t e rms  

we obtain a boundary value problem analogous to (1.11) for Qi(~1, DI). The functions ~l and 
their derivatives have exponential estimates of the form (1.13). The functions Pii, P3i, P~i 
that play the part of corner boundary layers near the corner points (0, b), (a, 0), (a, b) 
are constructed analogously. 

Therefore, the complete construction of the edge effect (the V. V. Bolotin dynamic edge 
effect) has been performed by taking account of the corner boundary layers. 

2. The Reduced Problem. 

We formulate the boundary conditions for (1.3) with respect to the function u(x, y). To 
do this, we substitute the function w(x, y) = u(x, y) + v(x, y) in the boundary conditions 
(1.2) [v(x, y) is determined from the expansion (1.5)]. Setting ~ << ] in (1.5), we limit our- 
selves to the zero terms of the expansion. From (1.2) 

Ov 

As an example ,  we c o n s i d e r  t h e  b o u n d a r y  x = O, 0 < y 5 b 

u(O, y) = -v (O,  y), u~(O, y) = -v~(O,  y). 

Taking (1.6), (1.7) and (1.12) into account, we substitute the representation of the solu- 
tion (1.5) into the boundary conditions (2.1) and neglecting the mutual influence of the or- 
finery and corner boundary layers, we obtain on the boundary x = 0 

u(O, y) = --[H,o(O, y) @ Qlo(O, B~) -f- Q~o(O, ~h) @ 
+ p~o(o, m) + P~o(O, ~) l  = -po(O, ~); 

us (o, y) = - In, o, ~ (o, y) + 0,0, ~ (o, m) + 0~o, ~ (o, m) + Plo, ~ (o, m) + 

-t- Pio, x(O, !]2)] = ~-~Po(O, Y) --~kPo (Oa O) [exp( - -  ]/rk~h) + 

- po,~ (o, o) exp ( _  V~a~) - po,. (o, b) exp ( -  V~ m),~ 

where I($, q) = i! G(g, q, s, t) exp [-/~(t + s)] dtds and G(~, ~, 
(1.12) and the estimates (1.13) are valid. 

Eliminating the function p0(O, y) in (2.2) and (2.3), we find 

~u x (0, Y)+ V~u (0, y ) = - -  Vkpo (0, O) [exp ( - -  ]/fknl) + V~ ~r 
(o, ~h)]_ 

- V~po (o, b) [ ~ x p ( -  V ~ , )  + ~ V ~  ~ J a '  (o, m)] _ ~po,~ (o, o) x 

• ~ p  ( -  V~n,) - ~po,. (o, b) ~ p  ( -  V~m). 

(2.2) 

( 2 . 3 )  

s, t) is determined from 

(2.4) 
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The quantities p0(0, 0), P0,x(0, 0) can be determined from the condition of consistency of the 
boundary conditions at the corner point u(0, 0) = -v(0, 0), Ux(0, 0) = -Vx(0, 0). We use the 
expansion (1.5) while neglecting the mutual influence of the ordinary and corner boundary 
layers, when at the corner point (0, 0) 

u(O, o) = - [n ,o(O,  o) § 01o(0, o) § Plo(O, o)l = -po(o ,  0). ( 2 . 5 )  

We f i n d  t h e  r e m a i n i n g  f u n c t i o n s  c h a r a c t e r i z i n g  t h e  b o u n d a ry  l a y e r  a m p l i t u d e s  a n a l o g o u s l y  

u(O, b) = --po(O, b), u~(O, O) = --po,~(O, 0), u~(O, b) = --po,x(O, b). ( 2 . 6 )  

S u b s t i t u t i n g  ( 2 . 5 )  and ( 2 . 6 )  i n t o  ( 2 . 4 ) ,  we o b t a i n  t h e  b o u n d a ry  c o n d i t i o n  o f  ( 1 . 3 )  on t h e  
boun da r y  x = O, 0 < y < b. F i n a l l y ,  t h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e  p rob lem ( 1 . 3 )  can be 
written in the form 

a,~:. 

[gUY (X'~ Y) -IU Vk/'~ (x' Y)]Y=!/} = ,i=li { V-~'u" (xi, Y.~) [exp (-- ]/k~i) -t -" (2 .8)  

x t = 0 ,  x 2 = a ,  Yl=0 ,  Y2=b. 

We therefore obtain a generalized eigenfunction and eigennumber problem (1.3), (2.7), 
(2.8), which we call the reduced problem of the original problem (I.i) and (1.2). 

Assume the solutions of (1.3), (2.7), (2.8) are given. The edge effects in the repre- 
sentation (1.5) can now be restored. Thus, from (2.5) and (2.6) we find the value of the 
function p0(x, y) and its derivatives at the corner points (0, 0), (0, b), (a, 0), (a, b) in 
terms of the function u(x, y). Substituting the value of p0(x, y) at the corner points into 
the solutions describing the boundary layer, we determine them completely. Furthermore, 
substituting the functions u(x, y) and Pi($, q) into (2.2) and analogous expressions for the 
other boundaries, we find the functions p0(0, y), p0(a, y), p0(x, 0), p0(x, b) and the edge 
effects on the boundaries in terms of them. Thus, the construction of the functions u(x, y) 
and v(x, y) is completed fully, and therefore, the solution of the original problem is 
obtained. 

We go over to a discussion of the possible simplifications by following [1-3]. Using 
(1.13), the right sides in (2.7) and (2.8) have the estimates 

[eu~ (x, Y) + Kk~ (x, Y)]~=~< C~j exp (-- •  + C~: exp (-- •  
( 2 . 9 )  

[euy (x, g) + ~ k u  ~ ,  ~ ]y=~j~D~jexp  (-- x~l) + D2jexp ( - -  • 

where  0 < K ! v~,  C i j ,  Di j  a r e  c o n s t a n t s .  From ( 2 . 9 )  i t  r e s u l t s  t h a t  t h e  r i g h t  s i d e s  o f  

( 2 . 7 )  and ( 2 . 8 )  d i f f e r  s u b s t a n t i a l l y  f rom z e r o  o n l y  n e a r  t h e  c o r n e r  p o i n t s .  

I f  t h e  s e c o n d a r y  p a r t s  in  t h e  e q u a l i t i e s  ( 2 . 7 )  and ( 2 . 8 )  a r e  n e g l e c t e d ,  t h e n  we o b t a i n  
t h e  s o l u t i o n  o f  t h e  o r i g i n a l  p rob lem ( 1 . 1 )  and ( 1 . 2 )  t h a t  a g r e e s  w i t h  t h e  s o l u t i o n  o f  t h e  
p rob l e m p r o p o s e d  in  [ 1 - 3 ] .  The i n f l u e n c e  o f  t h e  c o r n e r  bounda ry  l a y e r s  i s  n o t  t a k e n  i n t o  
a c c o u n t  in  t h e  method o f  [ 1 - 3 ] .  

The r e d u c e d  p rob lem i s  f o r m u l a t e d  in  t h e  c a s e  o f  t h e  e x i s t e n c e  o f  axes  o f  symmetry  r e l a -  
t i v e  t o  t h e  bounda ry  c o n d i t i o n s .  The main p a r t  o f  t h e  s o l u t i o n  i s  symmet r i c  r e l a t i v e  t o  
t h e s e  same axes  o f  symmetry ,  and a f t e r  s i m p l i f i c a t i o n ,  t h e  s e p a r a t i o n  o f  t h e  s p a t i a l  v a r i a b l e s  
i s  p o s s i b l e ;  t h i s  i s  in  good a g r e e m e n t  w i t h  t h e  r e s u l t s  in  [ 9 ] .  In  t h e  a b s e n c e  o f  axes  o f  
symmetry  r e l a t i v e  t o  t h e  bounda ry  c o n d i t i o n s ,  t h e  f o r m u l a t i o n  o f  t h e  r e d u c e d  p r o b l e m  i s  com- 
p l i c a t e d  s u b s t a n t i a l l y  s i n c e  t h e  bound a ry  c o n d i t i o n s  a t  t h e  c o r n e r  p o i n t s  can be d i s c o n t i n u o u s  
and t h e  c o n s t r u c t i o n  o f  t h e  c o r n e r  boun d a ry  l a y e r s  i s  made s u b s t a n t i a l l y  more d i f f i c u l t .  
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COROTATION DERIVATIVES AND DEFINING RELATIONS IN THE THEORY 

OF LARGE PLASTIC STRAINS 

P. V. Trusov UDC 539.374 

Interest in elastoplasticity with large strains, by which here we shall mean deformations 
with strain gradients exceeding (componentwise) 0.i, has increased markedly in the last decade. 
The main problem addressed by the theory of large elastoplastic strains is the derivation of 
the defining relations, in whose formulation some types of objective differential measures of 
the stressed and strained states, called corotational in the literature published abroad, are 
widely used. In this paper corotational derivatives are defined in a unified manner, and A. 
A. Ii'yushin's theory of elastoplastic processes is extended to the case of large plastic 
deformations. 

i. In what follows we shall require indifferent tensors. For this, following [I], we 
introduce two motions r(~ i, t) and r'(~ i, t) of the volume of the continuous medium under 
study differing by a rigid displacement: 

r'(~ i, t) = p' (t) @ [r(~ , t ) - -  p(t)].O(t). ( 1 . 1 )  

Here p(t) is the radius vector of a particle, chosen as the pole, in the motion r($ i, t), 
p'(t) is the pole in the motion r'(~ i, t); O(t) is a properly orthogonal tensor; (gi, t) are 
Lagrangian variables. We shall denote the reference configuration by 9~0, and the actual 

�9 . | �9 r 

configuration in the motlons r and r by ~ft and $~t , respectively. The basis vectors in 
9~ 0 are ~i = 8R0/85i and the basis vectors in ~t and ~t are 

~ Or ^, Or' 
-~F' e i = ~ a ~  ~' i = 1 , 3 .  

From (i.i) 

^ '  = 0  .e,, ~=e~ .O =O.e~. 

Analogous relations also follow from the properties of the orthogonal tensor for the vectors 
of the conjugate basis: 

^'~ ~ .  " ~  ~ ' i . 0  r ^,~ e O =  O r ; e  ~, ~ ~ O . e  . 
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